Feature Selection via Joint Embedding Learning and Sparse Regression
نویسندگان
چکیده
The problem of feature selection has aroused considerable research interests in the past few years. Traditional learning based feature selection methods separate embedding learning and feature ranking. In this paper, we introduce a novel unsupervised feature selection approach via Joint Embedding Learning and Sparse Regression (JELSR). Instead of simply employing the graph laplacian for embedding learning and then regression, we use the weight via locally linear approximation to construct graph and unify embedding learning and sparse regression to perform feature selection. By adding the 2,1-norm regularization, we can learn a sparse matrix for feature ranking. We also provide an effective method to solve the proposed problem. Compared with traditional unsupervised feature selection methods, our approach could integrate the merits of embedding learning and sparse regression simultaneously. Plenty of experimental results are provided to show the validity.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملFace recognition by sparse discriminant analysis via joint L2, 1-norm minimization
Recently, joint feature selection and subspace learning, which can perform feature selection and subspace learning simultaneously, is proposed and has encouraging ability on face recognition. In the literature, a framework of utilizing L2,1-norm penalty term has also been presented, but some important algorithms cannot be covered, such as Fisher Linear Discriminant Analysis and Sparse Discrimin...
متن کاملEfficient and Robust Feature Selection via Joint l2,1-Norms Minimization
Feature selection is an important component of many machine learning applications. Especially in many bioinformatics tasks, efficient and robust feature selection methods are desired to extract meaningful features and eliminate noisy ones. In this paper, we propose a new robust feature selection method with emphasizing joint `2,1-norm minimization on both loss function and regularization. The `...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011